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ABSTRACT

Three integral equations are derived and formulated
I ! for numerical solution for the currents induced on a
resistively loaded conical antenna over a ground plane.

The first integral equation 1s a relatively simple one for

f a cone without a topcap. The second and third integral ;
;1 : equations are applicable to a cone with or without a top- k

?? cap, but the latter equation is relatively cumbersome,

; ‘ ’ involving complicated kernels with various singularities.

?‘ A computer code has been developed for each of the three k

% i methods. Numerical data for current distributions, input ”

impedances and radiation patterns are presented for resis-
tively lcaded and unloaded structures, both with and

without topcap.
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SECTION I

INTRODUCTIOR

In a companion report [l], the static analysis of a
contcal antenna over a ground plane is presented., 1In this
report, the analysis 18 extended to treat the time-har-
monic case and to incorporate a model of the resistive
loading of the structure, The resistive loading is intended
to reduce the effect of diffraction from the cone edge at
the higher frequencies,

If the cone has no topcap, the analysis may be consi~
derably simplified and a simple integral equation for this
sitnation {8 derived in Section I1 and implementation of
a moment method solution is considered in Section III. In
Section 1V, an integral equation for the cone with a top~
cap 18 derived, Presented in Secticn V are numerical results
in the frequency domain currents for 8 loaded conical antenna
both with and without a topcap. 1In Appendix A expressions
are derived for the computation of fields from the currents
and Appendix B gives the derivation of an alternate integral

equation from that derived in Section IV.
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SECTION I1I

FORMULATION OF AN INTEGRAL EQUATION FOR
A BICONE WITBOUT ENDCAPS

For the symmetrically driven biconical structure of
Figure 1, the current on both the cone and its image are
radlially directed and have no circumferential (¢) variation.
Hence the magnetic field tangent to the cone is ¢~directed
and the boundary conditions can be satisfied by fields which
are transverse magnetic (TM) to r, Thus, the fields may
be completely determined by a radially-direccted vector
potential A = Ar? [2]. 1In an eigenfunction solution to
such problems, the fields are determined in the bicone 3
region from a vector potential Ar which comes from a
homoaeneous solution of the wave equation. 1In order to
derive an integral equation, however, Ar must be expressed
in terms of the current on the bicone. In particular, a L -
free space Green's function i3 to be found for the vector
potential Ar due to a unit radially-directed current element.
A superposition Iin egral then expresses the total vector
potential due to currents on the cone.

Beginning with the assumption that the mﬁgnetic field

is determined from A = Ar?, E

i =

= =
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Geometry of cone over a ground plane.
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;f z and using Maxwell's equations,
-
" r IxE = ~jeuil
; g
i 3 - . =
I o7 VxH = jweE+d
?z
,; : one readily determines by standard procedures that X satis-
i
h fies the vector Helmholtz equation

VaVxk - k2K = pI_f - jwuevo (1)

where & 18 a scalar such that

! E = -juA - VO
| f For a radially-directed unit current element,
. J - Jrf = 2§(r-7")

3 - p 80r-r')8(6-07)8(0x9") (2)

4 i r'2 gine" 4
! ¥
 @ : Expanding out (1) vyields K
o -1 3 A, 1 A 4

" o |55 |- 27 o7 T KA |E :

i, r sin 0 r'ein @ 3

A B

X § + 1 azAr ¢
3rob r sin 6 3¢3r

s
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from which it is seen that

3% .
3rag - TIUME 3p

Q>

2
9 A
T ¢
3¢3r - TJWHE 3§ (4)

These conditions are automatically satisfied by the gauge

choice . aAr
b = - —— (5)

Substituting (2) and (5) into (3) 1leaves the one scalar

component equality

2
37AL 1 3 A, 1 a%a
t T se (3 0 ge )t 2 )
Ir r 8in O r sin G 3¢
2 ot
+ kA = -us(r-r'") (6)

which can be rewritten in the more convenient form,

A - Ty
v+ k%) ¢ +£) - :Eéé%:1~) (7)

To obtain (7), one notes that

A solution of (7) which satisfies the radiation condition for

a exp(jwt) time convention may be written by inspection of (7)

as

o e b o i
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A

and the general solution to (3) for a distributed set of
currents is obtained by superposition:

_oik[E-F

A = B J (") A (9)

rt |-

This form of the vector potential has also been used by

others [3]. For the symmetrically-excited cone and its

image, _
-, Jsr(r') . :
3G - eI [a(e -8,) - 8(8 -n+eoﬂ (10)

where Jer is the bicone surface current density. Sub-
stituting (10) into (9) gives the desired equation for the
vector potential:

2w L
ur sin eo
Ar - B T Jsr(r )
0 0

-1kRY_-fkR”
repli — dr'ay’
R R

e

(1)

R "t + ¢'2 - 2rr'{sin 6 sin O ,cos(¢~¢')+ cos 6 cos 60]

0

The plus superscript denotes source points on the upper bicone
surface while the negative sign denotes source points on the

image surface,
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It is8 convenient to introduce the total axial current

I(r') = 27r' sin 6 Jsr(r') (12)

0

so that (11) becomes

2w L + -
. -3kR"T _-jkR
A = ‘]!rz f ‘[ I(r') (e _ e ~ldr'de’ (13)
r g -
0 0

+

r' R R

The radial component of electric field is now given by

E - 1 -—.a-i
r jwue ar2

2
+ k ] Ar (14)

The simplicity of (13) and (l14) compared to the usual

vectar potential
this poini. One
vector potential
Furthermore, the

contaln somewhat

repregsentations should be emphasized at
notes that in the usual representation, two
components, Ar and Ae, would be present,
integrands of the potential integrals would

complicated dependences on angles between

observation and source points which arise from prcjecting

the source vector onto the potential component vector for

each source and observation point, Finally, the expression

for the radially-directed electric field would be complicated

and difficult to handle numerically compared to the approach

to be followed here. These complications indeed will appear

in the formulation whichincludes a topcap on the bicone astruc~-

ture (Appendix B).
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An integral equation for the current is obtained by
applying the boundary condition that the radial electric
field must equal the impedance loading times the total

current density, i,e,,

E = zs(r)I(r)

Since all currents and fields are ¢-independent, it suffices
to take all observation points along the intersection of the

plane ¢=0 and the conical surface., Hence, we obtain finally

2

Toe [f—f + k3 A -2 ()I(r) =0, 0<r <k, 6=0,,0=0
r

(15)
Equation (15) is an integro-differential equation for the
induced current on the bicone., As it stands, (13) does not
appear to contain a driving term due to the applied
voltage at the bicone terminals. 1In the next section,
however, this term appears as a "boundary" condition on
dAr/dr at r=0, One also notes in (15) that discrete or
lumped loading may be introduced by allowing Zs(r) to be

represented by appropriate S-functions,
N

L
2g(r) = ] Zin $Crmryn)
n=1
for N, loads where 2Z is the impedance of the nth load

L Ln

located at r=r .
Ln

e e ————

e
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SECTION II1!

[ APPLICATION OF METHOD OF MOMENTS TO A
BICONE WITHOUT ENDCAPS

By Ty

X :
' 4 The usual procedure in applying the method of moments

[4] 18 to first represent the unknown current as a linear b
combination of an appropriate set Qf basis functions and

then '"test" the resulting integral equation with a series

of testing functions. Here it i{s convenient to reverse

this order and to first test the equation before expanding

= M‘ﬁ“ﬁgw&&

the current. A set of testing functions which offer a
number of advantages in a numerical procedure are the piece-

:% wise sinusoidal testing functions:

sin k(Ar-r)

3 . v, () = " sin kAr » O<rcAr
3 0 , Ar,zr<iL

f sin k(Ar—Ir-rml) {
; i 4
3 % "m(t) - sin kAr b Tme1 2T ZTh4 ;
Ee !
3 ; 0 . [r—rmI > Ar
: m= 2,3.00'H (16)

where Ar = L/M, rm= (m-1)Ar, m=1,2,.,.,M .

These testing functions are shown in Figure 2, An inner

product 1s next defined as ¥
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Testing functions for the cone.
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. <f(r), g(r) > "f f(r)g(r)dr (17)
! ; 0
|
é and (15) 1is successively tested with each of the L
' i ‘ m=1,2,...,M:
- 1 a2 . 2
; é ngg((];:g + k } A, w;> - <<Zs(r)l(r). L
=0, m=1,2,.,.,M (18}

FUELEWE. N FSEVEL S

Taking, for the moment, m=1 and integrating the first term

P v by parts twice results in

_ k _cos kir

sin kAr Ar(r

3)

, where Ar(rm) = A r_rm. Note that although

: 6-60

AL =0, (19)
O=m/2

o Cngl 6 s o

Ar(rl) ie not zerc along the bicone., In fact, one notes that

2
1 8 Ar
) jwuer 3rdB

and that the bicone voltage at r=0 is just




R i i st i U - -

§

{ m/2
: V.= E,rde
! 0 -l. 0 =0 i
; r/2 9 :
% _ 1 3°A_ 50 1 BAr(rl) :
b jwue ordd 0 jwpe  9r i
: 0, ]
-%“ where, using (19), one sees that BArlar-O at 98=m/2, ;
“
Thus for m=1, (18) becomes ki
!
k - cos8 kAr A (r.,) + A_(r,) %
: jwue sin kAr r 1 r 2 ;
; i
; |
3 - <és(r)1(r).w;>- =Y, (20) 1
‘ i
: ]
: For m= 2,3,4,...,M, integration by parts twice in (18) re- i
; sults in ;
! f k A (r ) - 2 cos kArA _(r_ ) + A _(r ) ;
A ; jwue sin kAr r o ml r m r m-1 i
] - <:?s(r)1(r), W :>. 0 .
w

m=2,3,.,,,M
(21)

Note that the choice of testing functions has resulted

in removing all the derivative operations from the operator

equations. This is the principal advantage of the testing

functions chosen.




A matrix equation now results if the current is
expanded in an appropriate set of basis functions., A

convenient set is the pulse functions defined by

0<r<Ar/2

Pl(r) =
Ar/fZz:rl

|r=r | < Ar/2
nl <

|rwr | > Ar/2
n

n = 2.3.,,."

{see Figure 3) and the resulting current expansion is

M
I(r) = § 1,9, (r)
n=1

Note that the current at the bicone edge re=L {is auto-
matically zerc by our choice of basis functions (Figure 3).
When (22) is substituted into (20) and (21), there

results the system of linear equations

k . .
1| Joue sin Kar [— cos ka&r ¥ (rl,rl,r1+) + ‘P(rz,rz,r1+)]

- <:Zs(r)pl(r), w1:> +

I
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[’ cOos

kAr ¥(r, ;r
1 T

Bt e 1 M ey A 2 T BT ™ n LSRN

_,rn+) + W(rz;rn-,rn+)]

"<Es(r)pn(r). h1:> - _vo

and

k
sin kAr

I1 Jwue

+ “’m+1‘r1"1+)]

M

k
+n§21n jwue sin kir

+ W(rm+1;rn_.rn+a -

These equations may be assembled

equation
Z1 =V

where

14

(23)

[%(rm_l;rl.rl+)-2 cos kAr W(rm;rl,rz)

- <Zs(r)p1(r), wm>}

[?(rm_l;rn,,rn+)-2 cos kArW(rm;rn_,rn+)

<Zs(r)pnA(r). wm>

‘m 0, m=2,3,.. M

(24)

into the matrix
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Figure 3. Pulse expansion functions for the current
on the cone.
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s i and the elements of the impedance matrix may identified { ﬁ
J A
E ¢ by
%j from (23) and (24). The functions W(r;rn_.rn+) are :
defined by ?
27 r X
+ - Y
. ! B (e IRRT_-ikR
. - g e s .. [} [} . n
\P(r,rn_.rn+) B2 : l r - dr'de (25) 3
r R R k
0 r _ 3
. n [
where ‘3
s . 3
R = /:Z+ r'z - 2rr'(ain260 cos ¢ + coszeo) (26) o
and where
3 r* = r + Ar/2
- 3 n n -
8 ? The evaluation of the double integral in ( 24) 1is
y simplified by analytically approximating the integration }
with respect to r'. This may be accomplished by noting that f
in general k(rn+- rn_)<< 1, Bo that a few terms - a 5
A
& Taylor series expansion about some point LI in the interval X
- BY.
3 § [rn_,rn+] should be accurate. Accordingly, one writes B
e ‘( "" .
B /X . X . &
s -3kR -JkR_ -3k (R -R) ;
AR N n n By -
¢ 3] e = @ e s
i R ﬁq
‘.‘ .3 - j k R n 1 :., . ‘JA"
N K * e [1-3k(R™ - Rn)] 27)
’. L + + 7‘
. where R;- R™ pwp + Substituting (26) into (24) and listing 3
- . n .
{1 as a fourth argument the point about which the expansion is -
i made, one obtains [
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Y(r;rn_,rn+) g W(r;rn_,rn+,rn)

27 r

n+ + { +
__p._r._f KRy l.l.iif‘fa ] J.ls]
Sﬂz r'R+ r'
0 r
"D (1eke ]
~jkR 1+jkR
-e 7 n [ %% -k ] dr'd¢’
r'R” r'
LI -
. -3kRY | 145kRT r4®RE_ 4 - o b
- 45 e — 1o + T
47 ) rn_(Rn+ + r - n+b )
r +
~jk&n |— —
n
~ijn 1+ijn rn+(Rn’ + r - rn_b )
-e o log | ~v——= -
l’n-(Rn+ + o - rn+b )
rn
~jkon f[——- de ! (28)
r .
n

where bi- sin260 cos ¢' #+ coszoo. In several situations,

appropriate limits of the integrand of (27) need to be taken,
First, when the socurce is the current segment at the bicone

terminals, the integral (27) reduces to the simple form

W(r;rl,r1+) = W(r;rz,rl+,r1)
m

-Jkr R4, +r - b r 4
- —uz—f e (l1+jkr)log L e L d¢'’

4w ‘ R¥+ +r -b Tyt

(29)
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As the observation noint r in (28) approaches the

bicone terminals, r*r = 0, the limiting form of the inte-

1
grand can be integrated. The result is
_u, "0
4 » - . —————
W(rl,rl.r1+.r1) > log(cot 5 ) (30)

a very interesting result that 1s independent of the sub-
domain size at the bicone terminals. Finally, all the so-
called "self terms" W(tn;rn_,rn+,rn). n#l, contain an

integrable singularity, In fact one easily establishes

that
rn+(R:_+ r - b+rn_) .
log -~ 2 log |¢']
r (R+ + r - b+ ) Lag ™
n= " "n+t Tat

This singular term is then subtracted from the integrand in
(27), resulting in a non-singular integrand which is then
numerically integrated. The term

mn

—:E_ff Ln|¢'|do' = ;Z_—l'rjr (Lnu
27
0

t

1)

18 then added to the result to take care of the part of the

integral contributed by the singularity,




SECTION [V

FORMULATION AND NUMERICAIL SOLUTION OF AN
INTEGRAL EQUATION FOR A BTCONE WITH ENDCAPS

The formulation ¢f the integral equation fur a cone
radiator over a ground plane with an endcap is considerably
more complicated than that for the case when the endcap is
not present. It 18 possible, however, to generalize the
approach used for the bicone without a toprap and to trans-
form the derivatives appearing in the equations into har-
monic operators along the radial cone and topcap coordinates,
as 18 done in Appendix B. This approach has the advantage
again that testing with piecewise sinucgoids allows the re-
placément of derivatives by a finite difference of potentials,
However, to effect this transformation., an extremely com-

plicated kernel must be used (see Appendix B ) which contains

many singularities other than the usual ones where source and ’

field points coincide. While this approach has been used,
it has been found to be unwieldy and rather inefficient,

The approach described here begins with the description
of fields in terms of the more ccmmonly used vector magnetic
and scalar potentials expressed 1in terms of the cone currents
and charge. However, 1t 1s found that these potentials are

singular at the bicone terminals which again creates an

unnecessary complication, In order to circumvent this problem,

the cone and Iimage surfaces are allowed to intersect with a

19
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small "waist" of radius "a" (Figure 4). If "a" is very
small, there should be negligible difference in the input
impedance and currents found for this case and that for the
limiting case of a=0. For convenience, the cone coordinates
are defined with respect to the projection of the cone sur-
face to a tip, as in Figure %4, Furthermore, the direction
of the unit vector ;t and the positive d;rection of corres-
ponding vector components Is taken to be towards the center
of the topcap, in the direction of decreasing T.:

The integral equations are obtained by setting the

radiated field tangent to the cone surface equal to the

impedance drop per unit length due to the loading:

3d
-ijrc- 3rc - ZsIc 0, a/sin 60< rci_L + a/sin 60 (31)
¢
-ijrt - s;t'- ZRIt 0, 0« rtg_L sin 60 + a (32)

where the tangent.al components of magnetic vector potential,

Ar and Ar sy are given by

c t
+
2T L+a/sin 6y . L . L
u ¢ pc v t
Ar " 2 Ic ° + + - drcd¢
p 8n R R
0 a/sin 90 pe pe
+ -
2 Lain90+a . +e'ijpt + "IkR t
cos bt
+ I T
t R .
0 o0 P
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Figure 4, GCeometry ot cone with endcap.
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The scalar potential is given by

2n l.+a/sin 6

0 ~jkR” -ikR”
. -1 f f pc pe
8n2jma : +
0

a/sin 6

The currents IC and It are the total linear currents on

the conical and topcap surfaces, respectively, and are re~

lated to the corresponding surface current densities JC and

b
Jt y

2nr  sin A _J
c 0 ¢

2nr J
t t

The distance quantities are all of the form

o
q

+

cosze - a cot B8.cos 39.¢1%1)
0 0 0




R e A T

" - _
= r: + azvnr OU(I+I)2— 2rrn cos ﬂocnt ”O(lfl)

sin 9, cos ¢'

0

2

2
= r - 2r cos Bpla cot 8o+ L cos 645) + (a cot 65+ L cos 8,)

<3 2, _ - ; '
+L cos 60 a cos eocot 60 r, sin 60 cos ¢

2 2
= o+
LN (L cos 90 + a cot 60)

1
= -r_ cos
¢ ¢

2 2 2 - 2
r, + L%cos 90(1+1)
angles between the source current elements and the
gentlal component of electric field at the observation
are determined by

' 2 2
¢' sin 80 + cos 60

¢!




It is convenient to choose as testing functions the
pulse functions P, shown in Figure 5. Thus, testing (31) with

Py results in

EY
“Jw <Arc’p1> - Brc' Pi) - ZSIC ,p£> 0

Upon integrating by parts in the central term, and noting

that Ar is slowly varying over the interval and heuce may

c
be approximated by Ar (rcl), one obtains
c
Arc
-ijrc(rcl) 7 T [(®(rc1+ At /2) - ¢(rc1)] - {2, L oP1:>‘ 0

But ¢(rc1) is just the bicone terminal vocltage VO with res-

pect to the ground plane. Hence,

-ijrc(rcl)ArC - 2¢(rc1+ ArC/Z) - (:Zs&: s pt) = ~2V0 (36)
For the remaining testing functlons on the cone,

testing of (31), integration by parts on the scalar potential

term and approximation of the vector potential by its value

at the center cf the pulse yields

—ijrCArc(rCN) - [¢(rcm+ ArC/Z) - Q(rcm' ATC/Z)]

- <ZSIC , Pm> = 0, m= 2,3?...NC-1 (37)
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Pulse expansion
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At the edge, the testing pulse consists of two parts,
one on the cone surface and one on the topcap. Hence, both
equations (31' and (32) must be used. With approximations on
the two vector potential componants similar to that above,
integration by parts, and enforcement of continuity of

the scalar potential at the edge, one obtains

Ar Ar

[ t
I Ay (rcN ) g A (rtlﬂ
C C t
-[¢(rch-Arc/2)—¢(rt1+Art/2)] - <Zstr’PNc> =0 (38)

where Ir = I or I, as is appropriate.

c t On the topcap,

one has, analogous to (37),

_ijrcArt(rtm) - [®(rtm- Art/Z) - o(r, 4 Art/Z)]

- {21, pNC-1+m> =0, m=2...., N +1 (39)

The current is next expanded in the set of pulse functions

P, of Figure 5,

Ic (rc) : z Inpn(rc) (4 0)
n=l
NC+Nt

It (rt) B z Inpn(rt) “1)
n-NC
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Note that the current Ly at the edge of the cone {8 the

c i
same on both the c¢one and the topcap surtfaces, The derivatives ;
of the curvrents above are approximated by a finite difference

of adjacent current pulses which is then assumed to be ex-

panded in its own set of 'charge'" pulses (see Figure ¢ ); :Q
’ B
N -1
dIc - < In+1- In +
A b o BTN )
c n=1 [ .
N N
d1 (1 -1 ]
t 2 n+l n +
- ALl oY) (43)
drt neN Arc n ot
(o]
where IN +Nt+l is taken to be zero.
c

Thus the vector potential quantities 1n (36)-(39) may

be written as

a —H_
Art 8“2 {?1 Wpc(rp, tor Tt ArC/Z)

N -1
+ ) 1_¥ (r ,r =-Ar /2, ¢ 4 br /2)
] cn ¢ cn v

- 2 : +
+ INC[\l’pc(rP,rCNC ArC/ , rch) + wpt(‘p'rtl'rtl rt/2)]
N§+Nt
+ 1Y (r , r - Av /2, r + Or /2)}
n-Nc+1 n pt p t,n+l NC t t.n+1-Nc t

p = ¢,t (44)
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The inner integrals in (46) and (47) can be approximately . A
analytically integyrated. They are all of the form

"n+ ~jkR

" o ! 4 8)
R -:,

r A

n= _'g"_r‘
where R 18 of the furm

i R = /r' 2+ 2r'h + ¢ 4 9)

! §

3 b

q Since the range of iategration [rn_, rn+] is small com- E

g |

5 pared to a wavelength, it is appropriate to expand e—ij in ‘

% a Taylor series about some point R which is the distance '

3 f

7}‘ ‘ from the observation point to a point r, in the interval ;

,( i

4 [rn_, rn+]. Thus,

3

. | -3kR ~3k(R-R ) -jkR_ |

T e = e e !

’ i 4

gi “JkR_ |

. = e [cos k (R-R) - 3§ sin k(R-R )] .

b4 2 ‘

‘M e [1- —- - Jk(R-R )

‘ ,-:A

b + 3 er ) Y6 |

h: The error In the real and imaginary parts is less than

R oL

i K (r-r )¢ kY ars)®

T e

‘A 1 T as
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! vhere Ar is the subdomain size, For five subdomains per
i vavelength (Ar/A = 1/5), this results in a maximum error
of less than 1% in both the real and imaginary parts of
. the integrand, The resulting integral should indeed be
; much more accurate than this. With this approximation,
}
i ! r
: n+ -jkR -§kR
. s dr' = e T, §1.)
: { R 1 2
- r_
o n
]
d
i where
. f r
. "o r-r )2
,l ’ - N '
.L. _ I1 R dr
i; \
Lo "o~
. 2.2
. k°R + b
el . - - n n+ n+ 2 _ @
AN 1 3 ] &n r— + k Rn(rn+ LI 3
- ‘ n- n- N
2 ) [
S i
X + k-
i -k2[ rn++ b R _ rn-+ E R + c-bzl |Rn+ rn-f-."b ] 3
ko 2 n+ 2 n- 2 R_ +r_ +b 4
.' n- Nw= P
o 3
}"‘ [
: ; and where it
'}; j To+ 3 3
) , k(R-R ) - k" (R-R_)"/6
1' ! I - n n dr'
g 2 R
. r
& n-
b | R ,+ r_ ,+ b
| - (- 3.3 _nt n+ 3,2 -
k| (-k Rn+ k Rn/6)ln R —— + (k-k Rn/Z)(rn+ tn_)
b LA
|
| &7
b, "-
Bt
N | 31




TR AT 1B ARG FTur i e e e e P T B e - - .- . P o et

T R T T D A T e -

. l"
. I3
‘_d £ 3
i + .k__.!:‘l [f_“_tt_z R - I'n_‘t-b- R + C."_b..)_.zgn E.l:‘++ rn++ b
‘ 2 2 n+ 2 n- 2 ’ R +r_ +b
. n-T Tn-
: L
§
L
’ 3 3
[ . ire -r -
F k n+ n- 2 <
é; 6 [ 3 b(rn+ - l"n-) + c(rn+— rn-)] ‘
4 {
% Combining these results, one has, finally,
gk
Y i
2 ": rn+ "JkR
L e I
- [ e
- ‘n-
) i
|
: _jkgn kzk 2 kaRn3 t,
[ e [l + JkR - 5 - b 3 !
< F - k2 + k R [c- _2__]] in Rn++ t'1'1*-'.' b |
i B Z 172 2 R +r + 0 [
n- n-
1,2, .13
-7 (k “+ 3k Rn)[(rn++ b)Rn+— (r__+ b)Rn_]
L
B M 3 3
3 b 3 r. .+ r
t
S * 4 [ BB b blr) - "nz)]
uJ .' 2 kSan k3c
I +[-—jk + kTR 4y 4 3—5—] (r_ W= o) (50)
i
Equation (50) is singular in ¢' Lf the observation point 1is
i\
¢ |k in the interval [rn_,rn+]. Hence, the integrals in (46) and ‘
- !
4; “‘«'rﬂ‘k“ L
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k

L y
! (47) need to be evaluated by subtracting the singularity
§

from the integrand and adding its integral to the numerically
‘ determined integral. 1If r, 18 in the interior of the inter- i
: b
S vel, r__< LR SO (50) behaves llke -2&nl¢'| near ¢' = 0; ‘
[ - - . \ -
E’ if L N (50) behaves like -&nl|é'|. The de .
B, 3
t‘: tails of the procedure parallels that described at the end
1

;‘ of Section IlI. i
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SECTION V

NUMERICAL RESULTS AND CONCLUSIONS

This section describes numerical results obtained
from the computer code developed from the theory described
in Section IV, The resulting code was written to model the
cone with or without a topcap. Hence, results from this
general code could be checked against those obtained from
the code based on the methods of Section III for the cone
without a topcap, For narrow cone angles, the calculated
input impedance for unloaded cones for various frequencies
was also compared to the theory of Schelkunoff [5] and
found to be in very good agreement. Resulrts from the general
code foi1 moderate cone angles were also compared with those
computed by the method of Appendix B, which includes the
effects of the topcap. These comparisons were made to vali-
date the consistency of the various approaches and to com-
pare with existing data. It was also established that
the input reactance at low frequencies could be used to
check the static capacitance calculated in the companion
report [1] for both the loaded and unloaded case. Finally,
it was verified that the computed results were almost
independent of the choice of the waist radius, a, of Section

III, provided a was chosen small enough.
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All the data in this section pertain to a conical
antenna with a vertical height of 40 meters and a cone
angle of eo- 42.26°. These parameters translate to a cone
gslant height of 54.05 meters and correspond approximately
to the cone considered in [6]. The locations and values
of the lumped resistive loads used are listed in Table 1
and are taken from [6].

Figures 7-10 illustrate the current distribution on

the cone at a frequency of 825 KHz, approximately the first

resonant frequency of the unloaded structure, Figures 1ll-14

1llustrate the same results at 1.375 MHz, approximately

half-way between first and second resonance of the unloaded

structure (see Figures 15 and 16). Two features of the cur-

rent distributions are notable. First, the edge condition
[7}, which requires that the current at the edge has in-
finite slope, and the continuity equation relating current
and charge, which requires that the total current approach
zero with zero slope at the center of the topcap, combine
to limit the amount of current the topcap can support.
Secondly, the loading, which increases to a maximum at the
edge, further limits current flow on the topcap.

Figures 15-18 {llustrate the variation with frequency

of the input impedance of the conical structure for the vari-

ous loading and topcap configurations. Again, the influence

of the topcap 18 found to be negligible, The absence of
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f Table 1. Positions and values of loading
I registors on the cone.
; : ARC LENGTH ALONG RESISTANCE
: : THE CONE GENERATOR
; _ : (METERS) (OHMS)
¥ - )
1
i s 12.17 4.69
il :
: ! 14.34 7.17
K| ; 1€.90 9.06
> Lo 19.93 11.74
- | ' 23.54 15.43
3 27.73 20.82
3 32.59 30.36
3 : 38.41 50.38
3 : 45.31 114.88
] | 53.43 114.88
3 E 63.15 100.00
4
i 72.25 100.00
J 81.35 100.00
I
&
5 36
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resonances fn the loaded case can be attributed to the
effectiveness of the resistive loading in eliminating
reflections from the cone edge which would result in

Pt standing waves on the structure,

Radiation patterns in the near-field region of the

loaded structure with a topcap (r = 100 meters and the

frequency is 550 KHz) are shown in Figures 19-21. Figures

22-24 give the corresponding patterns in the far field ;

P TR N T T A T TR PR T R

(r = 104 meters). For comparison, far fleld patterns for %

| the unloaded structure are illustrated in Figures 25-27.

¥ ‘ Although resources did not permit a time-domain analysis

e m . e i

of the response of the structure, such a study, which could
, include a simple equivalent circuit model of the pulser,

would be a logical extension of the present problem. To

J—
L T e e M e 7

be done efficlently, however, some {fmprovements in the

T

present computer code should be implemented. Specifically,

T e Wy T

et g Snbl § S
AT

an adaptive integration procedure should be employed to
handle the integrations over the conical current aub-

domains, whose radi{i vary drastically from regions near the

TR

- ) 2 feed to those near the cone edge. The present code uses a

ot T P 2D e N mari o i e e e

fixed order quadrature rule for all segments on the

atructure. Additional parameter studies can he carried out
- using the present code to assess the effects of lumped vs, i

distributed loading and the effects of various load distri-

butions on the performance of the simulator. A more
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ambitious project would more carefully model the actual
wire structure with loading.

One conclusion of this and the companion study [1]
is that the addition of a topcap does not significantly
change the electromagnetic parameters of the structure -
at low frequencies, the static capacitance and effective
heights are almost unchanged and at the higher frequencies, 1
the loading and the sharp angle at the edge tend to pre-
vent current from flowing on the topcap. This observation

may have some impact on the design of future simulators.
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APPENDIX A

CALCULATION OF RADIATED FIELDS

Once numerical values for the current distribution
have been determined, the fields radiated by the bicone
structure can readily be determined, Because of the
gyametry of the structure and the excitation, the only
non-zero components of the electric and magnetic fields

are Er’ Ee, and H¢. These are defined in terms of the

vector and scalar potentials as

e R

190
By = ~Juhg - ¢ 5§
A A
g 1A (A1)

where A = Ar; + Aea. A spherical coordinate system centered
at the bicone feed and with 0 measured from the z-axis 1is
asgumed. Since the fields are ¢-independent, all fields

are evaluated in the x-z plane where ¢ = 0. The vector

potential and scalar potential are given by

I
- B2
A,(r,0) 2\ Yoo (rad,ry + Ar /&)

N
c
+] ¥ (r,8,r) +
ez D pC n




INc+1 Arc Art
+ 3 [\l’pc(r,e.L- T) + \ypt(r'e'rﬂc'f-l - —7;~)]
)
+ I ¥ (r,6,r)): p=r1r,0 (A=2)
L n pt n
n Nc+2
N
¢ |1 -1 Ar
o(r,0) = —— | ¥ [~ﬂ§%——ﬂ]wc[r,e,rn+ —32]
8T jwe | n=1 c
N I -1 Ar
+ ) [“Biiﬁ_ﬂ]w [r 8,.r - __E] (A=3)
Ar t{ ' *'n 2
n-Nc+1 t

where the currents and coordinates are defined in Section 1V,

The potential functions ¥ and ¢ are defined as

Al -ij: -3kR
+ e - @
(r,0, =A d¢' A-4
qu,r rq) T .’. cos qu ¥ + cos &pq = ¢ (A-4)
q
0

2n

—ij: ~JkR™
wq(rleprq).Arqf £ Y - £ d¢', p=r,08; q=c,t (A-5)

0 q

where

cos Eti = t gin O cos ¢' sin 90 4+ cos 8 cos 90

cos Eez = + cos B cas ¢' ain 6_ - sin O cos 80

0

+i

+
t ,
cos grt 8in O cos ¢

+1

cos EBt = + cos O cos ¢'

and the radiua vectors are all of the form

+
R /;%2+ 265! + ¢

1

9 9 q
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with

o
0H =+
[}

-r cos ¢' sin O sin 60 + r cos 6 cos 60 - a cot 90

-+

c = r2 + 2ra cos 8 csc 60 + azcsc2 60 f

[p}

i+

-r sin 6 cos ¢'

o
lad
[}

2

-

¢ = t2 + 2rL cos O cos eo + L

Assuming a suitable choice for Ar and A®, one may approxi-
mately compute the fields in (A-1) by finite difference

approximations;

- - _ %(rtdr,8)-0(r,0)
Er(r,e) ijr(t,S) At

- - _ $(r,6+446)-0(r,0)
Ee(r,e) ije(r,O) TAG

A, (r+bt,8)-A.(r,9)
1 0 ! e " *
- rAe(r,a) + e

UH¢

A (r,0+46)-A_(r,0)
_ _r r (A-6)

rA6




APPENDIX B

AN ALTERNATE INTEGRAL EQUATION FOR
A CONE WITH TOPCAP

The purpose of this appendix 18 to show how a novel
identity involving the free space Green's function may be

used to change the integral equation into a form where the

testing procedure of Section III 1is applicable. In ex-
change for simplicity in the form resulting from the testing
procedure, however, one obtains extremely complicated ker-
nels in the integral equation, Furthermore, the new ker-
nels have a number of singularities other than the usual

one where match points and field points coincide. These
complications make both the analysis and the numerical | ;
treatwent tedfous., Nevertheless, numerical results have
been obtained for several cases using the approach and the
results are In good agreement with data obtained by the

method of Section III. For simplicity, we treat here only

the unloaded cone.

As a prelude to the integral equation derivation,

we derive a transformation of the formula for electric
field components. Consider the x-component of electric

field given by
jupe B, = &+ (k4VV)A

- k2a + 2 (VeR)

X 0x 2 2
32 2 39 éy 9 Az
- (Bx2 + ok )Ax+ IXJy + 3xd z

65
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; where the vector potential % in terms of current density
i -
f J 1s k| F-F' ;
é‘- K - —l‘-u? f3 L P dv' (B-2)
; lr-t'|
i v 5
{ g
§ The identity !
: 32 e JkR - - 32 + k2 uv e JkR (3-3) ?
:; dud v R auZ v2+w2 R §
: v 2,2, 2 . . 1
; where R = "u +v +w” can be used with u = x-x', v = y=-y', A
and w = z~-z' to rewrite (B-1) as 3
; 4
2 et o p
‘ jwpe E = 3—3 + K2 I- 3 {x-x ;(2 y') ) ]
F‘ Ix y (y=-y'") "+(z-2") g
R Vv B
g (x=x")(z=2") \eT3KR
ke - Jz 2 2 R dv
b (y=y') " +(z-2z")
] 2 . ;
- ) 2 = (x~x") [fCy~y")+8(z-2"')] ]
& "7 + k Je & - 2 3 »
3x ) (y=y") "+ (z-2") 1
v v ]
E a
j ; -ikR ¢
Bl « & av! (B-4)
E The vector T-r's (x-x')& + (y-y')% + (z-2')% can be written i
E as the sum
' m " . ! 3
{ ) r-r (r=r') & + (r-r') ¢ :
. where S
- i
;' . . (r-r')x = Re(r-r') = x-x' f
Eo 66 !
é ~‘f !
E P é
;-iii ;é



is just the component of r-r' along the direction of X and

2]
(a1

(r-;')tﬁ = - (?-;')xﬁ

18 just the component of r-r' transverse to %. Thus,

(B-4) can be written as

2 €(r-r') (r-r"') -jkR
juue E_ -[Q——- + kz]fi- £ - t 5 X1 & dv'*
v t

sz
(B=35)

Since the cholce of the coordinate system is arbitrary, we
may choose the x-axis parallel to some constant unit vector
8 and write the component of electric field in the direction

of &8 to be

2 €(r-r') (r~r')a
9 2 - ~ t
jwue Ea-[——7+k]f.1- a - . 5
t

s (r-r")
v
-jkR
e '
X R dv
2 _ o -3JkR
- [%——i + kz]fJ-[a - £ cot (S,r-r')}i—R—-— av'!
8
\

(B-6)
where now £ denotes the direction of the component of
(r-r') transverse to & and s denotes distance along a line

i the direction of &. Note that the integrand in (B-6) is

gingular not only when R=0, but also when the angle between

4 and r-r' becomes either 0° or 180°. Since 1in (B-6) the
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only differential operator 1s the harmonic operator, then
along a line in the direction of 4, the testing procedure
of Section III which uses piecewise sinusoids may again be

used to transform the harmonic operator into a finite dif-

ference operator., This is the advantag:, gained at the
expense of obtaining a wore complicated kernel, of em- _ﬂ
ploying the transformation (B-3), ‘
Returning to the cone problem, we choose the direction
of & to be along the cone generator formed by the inter-
section of the ¢=0 plane and the cone surface, and apply
the boundary conditions. After some straightforward but
tedious vector projection operations, one arrives at the

integral equations

Jwue 3r2
c
Og_rcg_L (B-7)
L 32 k(v + ¥ )= v, 0<r <1 sin 6
jwye 2 tc tt ’ -t - sin 0 (B-B)
ar
t
where 21 L
- -_}:‘__. 1 + - ' ]
\Ppc(rp) hzf flc(rc)(l(pc+ Kpc)drc'w
0 0
27 Lsin®

0
- _H.__ ) + = 1 '
Wpt(rp) 8“2 ff It(rt)(xpt+ Kpt)drtdtta ,
0 0

P ™ C or t (B-9)
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C 3
g + a
? The kernels K;q in (B-9) are of the form s
§ ¥ + + ‘
. C_(r',¢'")[aA "Jr'4+B. (4" ‘
1 e ortotym [ DY (o'y4 pq(Tgr 9" A, (@)r +B  (3')] o
pa p’ q’ Pq 2 22, L,
< C (', 0 ")
Pq Pq q 5
jkR*
e Pq
. R 1
i Pq 4
" + )
i The distance between source points and field points, R;q,
i
§ g is of the form
b i
: ’ t + E
1. RE o e 4ot e
; ; P q Pq 4 Pq g
S + + 1
N § and bpq and °y are as defined in Section IV with "a" set E
) : B
P r + .
K : equal to zero. The term Cpq may be expressed as &
' 1
:‘) E’, :
: ¢t mefrt o4t 1
3 P Pq 4q q ;
2 k.
+ t t t |
R The parameters A, B~ , Dp » and qu are defined 1in

Pq 4
Tables (B-1)-(B-4). 9

Testing Equations (B-7)and (B-8) with plecewise - g
sinusoidal testing {unctions as in Section IIl results 1in

the equations

sy S R R A T IR DR I s v e g e e
.

k
! ij€ainkArc { coskArc[ch(rcl) * Wct(rcl)]
% s + [ch(rcz) + wct(rcz)]} = _VO (8-10)
A l)‘ i
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: TABLE B-1
;
‘)- DEFINITIONS OF PARAMETERS FOR THE KERNEL ch
t 2 2 2 - 22
i - ' '
- Acc sin eo[sln ¢' + cos Bo(cos '+ 1)°]
i p¥ao
: ce
b |
: t + 2 , 2
: D.ec €c sin 90 cos ¢' + cos 90
L
? f * = r
: ce c
' TABLE B-2
) DEFINITIONS OF PARAMETERS FOR THE KERNEL Kct
by ’ +
; A, = cos’ey cos’e' + sinZy’
!
; Bi-;Lcosze gin 8, cos ¢'
to ct 0 0
, f + - - t - '
: ct e .t sin 60 cos ¢
i
S t - 2
R fct: T, + L cos 60
iy -
i
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TABLE B-3

DEFINITIONS OF PARAMETERS FOR THE KERNEL Ktc

t 2 2 2., 2
A sin 60 sin"¢’ + cos”8

m o e
o "'-_",‘]“'T‘P o

B = - L coazeo

.

e

kS 1
Dtc - e, . sin 90 cos ¢

' TABLE B-4
DEFINITIONS OF PARAMETERS FOR THE KERNEL K . b
* 2., 4
A:t = gin ¢ ;
By = O 1
i
t . , .
Dtt e . cos ¢ ,g
t. .
Fee = T k..
v '|}
f ﬂf
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and
k
jwuesinkArC {[\Pcc(rc,m+l) + \yct(rc,m+l)]
, ~ 2coe kArc[‘l'cc(rcm) + ‘I’ct(tcm)]
) ; . + [\Pcc(rc,m-l) + vct(rc,m-l)]} =0
" m-2’3gclo,NC‘l
' % (B-11)
, hi Testing at the cone edge with a plecewise sinusoidal testing
a function which straddles both the cone and the topcap and
Jf’ which hag its peak value at the cone edge, one obtains
s i
i k
3 i queoinkArc{ cos kbr [¥  (r oy * \l‘ct(rch)]
3 l .
fi 7 3
i
“;_3;- % + [wcc(rc.Nc-l) + \yct(rc,Nc-l)]
/| P k
' f ¥ joHesinkAr { cos KAr [¥, (r.,) + ¥, (r )]
] Y (r ) 4 wtt(rtﬂ/]}
1 a\ycc a\yct: aWtc a\l’tt
i + + =
' jwue or or ar or
. ¢ € Ir =r t t r _=r
7 ¢ cNe t tl
3
4 (B-12)
: Finally, testing on the topcap surface yleids
| . c
. jwpesinkAr, {[wtc(rt,uﬂ-l) * ‘Ptt(rt,m-tl)]
|
4 , - +
2 cos kArt[\l’tc(ttm) + \I’t.t(rtm)]
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+ [wtc(rt,m—l) + wtt(rt,m—l)]} =0

m'2,3,...,Nt+l (B~13)

. Substitution of the current expansions, Eqs. (40) and (41) of
Section IV, into (B-10)-(B-13)yields a matrix equation for
the determination of the unknown current coefficients. Be-
] cause of the pulse expansion for the current, the matrix
elements involve integrals like (B-9) but with the current

in (B~9) equal to unity and the limits on the radial inte-

A

gration replaced by the limits of the corresponding current

Al

subdomain. According to (B-12), the term at the edge also

requires the derivative of such integrals., 1In the following,

3 VO

we present a procedure for approximately evaluating the

;h) ~ radial integration, leaving the ¢' integration to be done

_ﬁ' . numerically., The required integrals are all of the form
g ¢
‘ L rn+ rn+ 1kR
‘v ‘1 1 -
K dr' = p 4 SLAr'4B) | e dr ' (B-14)
¢ | 2_.2 R
B R°-C
r
n- n-

1 where, for convenience, all subscripts and superscripts have
f= been suppressed. Since the number of subdomains should be

B g chosen such that k[rn+— rn_l is small, we chose some point

r, in the interval fr _] and expand exp(~jkR) in a Taylor

r
n+’ ' n

series about the point r's= r o

Y

Pewp gimy e R
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-3kR -JkR_ -3k(R-R_) E

| ¢ me e ’ !

i ~3kR_ '

¥ e [1-jk(R—Rn)] (B-15)

[ . where R, denotes R evaluated at r'-rn. The resulting approxi- Q

i

i mate integral is ;

] 2

{ . r T

! n+ n+ Rt

1 -JkR . 1-3k(R-R_) 4

! Kdr's e " p + S{Ar +B) 2 |ar 1

! R -C 3

? r d 1

; n- n-= A

| - “JkR, E

i : - e (I, + 1, + 1) (B-16) _,

i ! where 3

¥ rn+

¢ 1, = -1k + ._ﬁ.ér ‘;B dr? 3

3 1 R2-¢ 2

;. ro- :

: I. = D(1l+j kR dr' 1

P 2 R

- and 1

. ]

2 : C (Ar ! +31 dr' 3
¥ |

4 1

2

k. The first integral may be evaluated by substituting the b

definitions for R and C in terms of b,c,e, and f;

. !:
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Diaiarte - orn

Aer'2+(Be+Af)r'+Bf
I,= -jk D + dr'
! f (1"ez)r'2+2(b—ef)r'+c-f2

2 2

n+  n+

R % -¢
n- n=-

An I

= -4k Fl(rn+-rn_) + F2

(l-ez)rn++(b-ef) ]
Y (1-e2) (cm£2)~(bogf) 2

-1
+ F3 tan [

(1-e?)r__+(b-ef)
. (B-17)

-1
- tan
[/?1-e2(c-f2)-(b-ef)2

where
Ae

l-e

F. = D +

1 2

(Be+Af) (1-e2)-2Ae(b-ef)
F -
2 7.2
2(1-e®)

Py = [2Ae(b-ef)?he(1-e®) (c-£2)- (Be+Af) (b-ef) (1-e?)4Bf (1-e2)?]

x [(1-e%)2 Y(1-e2) (c-£2)=(b-ef)?]"}

The tabulated integrals Dy 160.01, 160.11, and 160.21 aid in
the evaluation of IlT 12 may be evaluated using Dy. 380,001

as l‘n+

dr'
IZ - D(l+ijn)f R

r
n-

+The abbreviationslw and GR refer to Tables of Integrals and

other Mathematical Data, Fourth Ed., H.B. Dwight, Macmillan,
N.Y., 1961; and Tables of Integrals, Series and Products I.5.

Gradshteyn and I.W. Ryshik, Academic Press, N.Y.,, 1965, res-
pectively.
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R
= D(L+]kR )2n L (B-18)
n

The subscripts n, n+, and n- denote quantities which are

)
evaluated at r "r s T and L respectively.

The evaluation of I3 18 facilitated by expanding 1t
in partial fractions and using the substitution

sinh g = (r'+b)/ c-bz to obtain

r
n+
[}
= (1+1kR ) C(Ar'+B) ';f ’2“3 dr '
R -~
r

I
3 C
“-
r
n+
| Guery Lo 1) e
2 R-C R+C R
r
n-

O+
(1+3kR ) n /3
- — (A"c-b“ sinh 0 + B-Ab)

6
n-

1
x
c-b2 cosh 0 -e/c-bzsinh 9 ~ f+be
- 1 a0

2 Yc-b® sinh 6 + f-be

c~-b” cosh O+ e c-b

Using GR 2.451.2 and GR 2,451.4, one finds the latter integral

to be




L RN R ke ne o

‘.'st ¢
A B
48
1]

I
" 'r.
A

I e i e =

P

Rn++rn++b

.-—M-..A e S ——————————— - v
R +r +b
n~ n-

— in
l-ez

I3 - (1+ijn)

L

(R 4=CL) (R _*C )

n+

(Rn--_cn--)(R

n++Cn+)

2
L Cq )-(be=DIR 4 +b%=c
Fs(rn++b)

v 2 2
c-b (Rn_-Cn_)-(beuf)Rn_+b -C
Fs(rn_+b)

—

2 2
c=~b (Rn +Cn+)+(be-f)Rn++b -c

Fs(rn++b)

+

-p2 - Z_
c-b (Rn_+Cn_)+(be f)Rn_+b c

Fg(r _+b)

(B-Ab) (1-e2)-Ae (be-f)
F5(l—e2)

Fo = Y (c-b2(1-e?)- (be-f)2

Equations (B-17)-(B-19) complete the evaluation of (B-16).
The derivative terms appeiring in (B~12) require

evaluation of integrals of the form

"0+ )

R ~-C




where the uoorimed variable r is r, or rt, as appropriate.
The two edge terms also have non-integrable singularities

at the edge which cancel between the various terms. To
handle this situation nuwerically, the singularity must be
explicitly identified aud removed for numerical integration.
Thus the same kind of approximate analytical integration of
(B-20) as used to evaluate (B-16) would both eliminate one
integration and explicitlr identify the singular term. The
derivative can be taken inside the integral if care is taken
to identify the singular terms, Noting that 3C/3r = 1,

S(Rz-cz)/ar = 0, and 3A/3r = 3B/3r = 0, we have

2
Ar'+B 1 _ C -jkR, ,
+ Y] (R - -—)] e dr

R -C R

With the approximation of (B-15), the above may be written

as

~JkR_

e (1, + 13 + 1+ 1,4+ 18) (B-21)

The various integrals appearing in (B8-21) are defined and

evaluated as follows:




r
n+ n+
1]
_— _sz D 4.+ - _sz D(er'+f) 4 .
4 R R
r r
n- n-
R ,+r_ _+b
- - 2 - - s n+ n+
k [ée(Rn+ Rn~) (be-=f)in i;::;;j:g ]

where Dw 380.001 and Dw 380.011 have been used.

n+
- ' -

L - «2x (De glr +£D-B
n r'“42br'+c

r
n-

RI‘H-

R
n—

a k Rn (De-A)L&n

r .+b

+ fD-B-b(De-4) tan—l “n+ - tan
v 2 2
c-b c-b

where Dw 160.01 and Dw 160.11 have been used. Using

DW 300.003 and Dw 380.013, one obtains

r
n+
= (A-De)r'+(B-Df) , ,
16 (1+jknn)f 33 dr
r
n-
1+jkR r r
n n+ n-
- [B-Df-b(A-De)] |o— - T—
c-b? R+ R
L
+ [b(B-Df)-c(A-De)] [r - El—]

n+ n-

(B-22)

(B-24)
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Again using Dw 160.01 and Dw 160.11, we have

) n+
- - Ar'+B '
I, jk(1+ijn)f s dr

R%-C
r
n‘
rn+
1]
- -jk(1+ijn)f Ar +B dr!
(l-ez)r'2+2(b-ef)r'+c-f2
l'n_
2_. 2
= -jk(1+jkR ) { —A— g | Bt 0t
171 o (1-e?) 2 2
R_%-¢
n- n-
2 (1-e%)r +b-ef
, B(1-e®)-(b-ef)a -1 € Jra4 07E
2 tan F
(1-e“)F 6
2
1| (1-e ) _+b-ef 1
~-tan F
o
(B-25)
where
P, - Y (1-ey (c-£2)-(b-ef)?

The remaining integral is

rn+
18 = kz (Ar'+B) [% - -75~7]dr'
. R -C
T
n—
rn+ )
1
- -k? E"L%L—%Eldr'

r R(R"-C")




C(er'+£) (Ar'+B) .,
2 2 r
R(K“-C*)

C[Aer'2+(Af+Be)r'+Bfidv,
R(R%-c?)

Dividing R%-c? = (1-e®)r'?+ 2(b-ef)r'+c-£% into the
bracketed term in the numerator of the integrand, we may

write the integral as

l-e2 R2-C2

t
_ [ Ae . (Af+Be+W)r +Bf+U] de’

Expanding the second term in brackets in the integrand 1in

partial fractions, one can write 18 as

- ' "
18 I8 + 18

where

R . +r  +b
n+ n+
(f-be)in | g+ 3% ]
n- n-

(B-26)
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and -
; s p ot ]
f " _:!S__ ' 1 - 1 dr'
% I" == f [(Af+Be+W)r'+BE+U] [R—C R+C] R 3
{ rn- ‘
§ The subsgtitution sinh 6 = (r'+ b)/'/c-b2 enables one to write :
5 18" as 1
’ 9 Ons — 4
: 1"= "—‘-2‘- [(Af+Be+W)’ c-b%sinh 6 + BE+U=b(Af+Be+W)] :
4 en_
3
1
x 1 ‘
Yc-b“cosh f-e c-bzsinh 8- f+be i
)
;
3 fl‘"‘f i
3
c-b"cosh 8+e c-b sinh §+f~be 1
Using GR 2.451.2 and GR 2.451.4, we obtain finally ’:
1."s -k2 Af+Be+W in l (Rn+-cn+)(Rn-—+Cn-) :
8 2(1_e2) (Rn-—cn-)(Rn++Cn+) j
+ S(Af+BedW) R+ Tas*P .
2 R +r +b ]
(1-e7) n- n- ‘
.2 2 '2j
' E can'l [ c-b (Ru+-Cn+)-(be-f)Rn++b -c
7 (rn.'_-"-l':)F5

' Ye-b2(R_ -C_ )-(be-f)R_ +b%-c |

- . -1 n- n- n-
_ - tan .;
(r“_-H:t)l"5 :
L B :
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v .2 2
c=-b (Rn++cn+) + (be-f)Rn +b“~-c

+
(rn++b)F5

- tan-l[
J

/ 2 2
c~b (Rn-+cn-) + (be-f)Rn_+b -c
(rn_+b)F5

(B=27)

+ tan-l[

where

_ [Bf+U-b(Af+Be+uw)] (1-e®)-e(be-f) (Af+Be+W)
2
(1-e )F5

F,

Equations (B~22) through (B-27) complete the evaluation of
the integral, (B-21). Recall that the integral (B-21) needs
to be evaluated only for observation points at the bicone
edge (see.gq. (B~12)). For the source current pulse
assocliated with the bicone edge, there rewsults a non-
integrable singularity (with respect to ¢' integration)

which comes from the term 1/Rn in (B-24). Each of the

+
derivative terms in (B-12) contains such a non-integrable
singularity, however, and they are of opposite signs so as
to cancel each other. For numerical integration, of course,
the canceling singularities must be analytically subtracted.
The integrals I1 through 18 contain integrable singu-
larities such as the usual one where source and field points
coincide (i.e., R=0). 1In addition, however, there are also
integrable singularities introduced by the transformation
(B-6). These arise from current sources which lie along and

are directed transverse to the line which passes through

the observation point and which 18 in the direction of the
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electric field component of interest. For example, in
computing the tangential field component Er on the cone,

C
singularities arise from currents on the topcap and its
image. While the many singularities complicate the numerical
procedure, they can, in principle, be handled. However,

the unwieldiness of the functions appearing in the integrals

I, through I

1 makes the numerical procedure rather ineffi-

8
cient and subject to error. For example, the computer code
derived from the formulation presented here seemed to yield
reasonable results for moderate cone angles, but often
yielded erroneous results for the very small cone angles

used to check the program. The complexity of the formulation
became a considerable hinderance in determining the source

of these difficulties. Consequently, the final calculations
were done using the formulation of Section III which was

developed as an extension of methods currently being used

to treat flat plate surfaces.
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